

Fig. 3. La droite $D_1(x_0)$ ne peut servir à délimiter le domaine d'existence car le point x_0 n'est pas un minimum absolu de la fonction g(x).

Fig. 4. Le point représentatif: U_h , U_{3h} se trouve dans la région non hachurée.

les droites $D_1(x_0)$ (Fig. 3), l'existence de points tels que M_2 infirmant la condition (4).

Application

(1) Cristal centrosymétrique

Prenons:

 $p(x) = \cos 2\pi h x \qquad P = U_h$ $q(x) = \cos 2\pi k x \qquad Q = U_k.$

Acta Cryst. (1962). 15, 89

Unit cell and space group of LiBrO₃. By JOHN H. BURNS, Reactor Chemistry Division, Oak Ridge National Laboratory,* Oak Ridge, Tennessee, U.S.A.

(Received 19 May 1961 and in revised form 20 September 1961)

The unit-cell dimensions and possible space groups for lithium bromate have been determined by single-crystal Weissenberg and precession methods. Specimens of

Fig. 5. Le point représentatif: U_{3h} , U_{2h} se trouve dans la région non hachurée.

 Γ est une courbe de Lissajous et on trouve ainsi une inégalité entre U_h et U_k (cette inégalité n'est pas généralement susceptible d'une représentation algébrique simple). Par exemple pour U_h et U_{3h} , U_{2h} et U_{3h} on a les Figs.

(4 et 5).

Pour U_h et U_{2h} on retrouve la parabole de Harker & Kasper.

(2) Cristal non centrosymétrique

Si on écrit $U_h = A_h + iB_h$ la méthode permet de trouver des inégalités entre B_h et B_k , B_h et A_k ; il suffit de choisir correctement p(x) et q(x).

Cette méthode peut-être généralisée; en prenant:

$$g(x) = 1 + ap(x) + bq(x) + cr(x)$$

on délimite un volume permis dans un espace à trois dimensions convenablement choisi; appliquée à U_1, U_2, U_3 on trouve un volume compris entre les deux cônes d'équations.

$$U_1^2 + U_2^2 \pm 2U_1U_2 - (1 \pm U_1)(1 \pm U_3) = 0$$
.

On reconnaît là certaines des inégalités de Harker & Kasper.

Références

HARKER, D. & KASPER, J. S. (1948). Acta Cryst. 1, 70. KARLE, J. & HAUPTMAN, H. (1950). Acta Cryst. 3, 181.

anhydrous $LiBrO_3$ were obtained by recrystallization from an aqueous solution of $LiBrO_3$. H₂O above 52 °C. It was necessary to protect the crystals from moisture during X-ray examination.

Lithium bromate is primitive orthorhombic and has the unit-cell dimensions given in Table 1. Systematic

^{*} Operated by Union Carbide Corporation for the U.S. Atomic Energy Commission.

absences indicate that the space group is Pnma or $Pn2_1a$. An approximate density of 3.62 g.cm.⁻³, obtained by pycnometry, corresponds to four formula weights per unit cell (calculated density: 3.76 g.cm.⁻³).

Table 1. Unit-cell and space-group data

	LiBrO ₃	$NaIO_3$
a	5.99 ± 0.02 Å	6.37
b	7.86 ± 0.02	8.11
с	$5 \cdot 06 \pm 0 \cdot 02$	5.74
Z	4	4
Space group	$Pnma \text{ or } Pn2_{1}a$	Pnma

The crystal structure of sodium iodate has been reported by MacGillavry & Van Eck (1943) and by Náray-Szabó & Neugebauer (1947). The unit-cell and space-group data for NaIO₃, taken from these papers, is included in Table 1 to indicate its similarity to LiBrO₃. For the purpose of this comparison the axes of NaIO₃ have been renamed, bringing them into the standard setting. Although the diffraction symmetry is the same for both compounds, the optical goniometric determination of the point group of NaIO₃ (Eakle, 1896) allowed a unique space-group assignment to be made. A survey of the reflections of LiBrO₃ reveals that the *hkl* intensities are generally weak if h + l is odd or k is odd, a relationship also observed in the case of NaIO₃. The two compounds are probably isomorphous.

The powder pattern of LiBrO₃, obtained with a Norelco diffractometer and Cu $K\alpha$ radiation, is presented along with the calculated spacings in Table 2.

The writer is grateful to G. E. Boyd for suggesting this problem and to D. E. LaValle for providing the samples.

References

EAKLE, A. S. (1896). Z. Kristallogr. 26, 558.

MACGILLAVRY, C. H. & VAN ECK, C. L. P. (1943). Rec. Trav. Chim. Pays-Bas, 62, 729.

NÁRAY-SZABÓ, I. & NEUGEBAUER. J. (1947). J. Amer. Chem. Soc. 69, 1280.

Table 2. Powder pattern of LiBrO₃

hkl	I	d_o (Å)	d_{c} (Å)	hkl	Ι	d_o (Å)	d_{c} (Å)	ļ	hkl	I	d_o (Å)	d_{c} (Å)
011	1	4.26	4.26	221	3	$2 \cdot 153$	2.155		113	1	1.588	1.590
020	28	3.92	3.93	022	8	$2 \cdot 124$	$2 \cdot 127$		232	5	1.551	1.555
101	100	3.86	3.87	040	6	1.961	1.965		331	7	1.514	1.515
111	25	3.47	3.47	202	28	1.930	1.933		400	12	1.500	1.498
200	16	2.99	3.00	212	5	1.875	1.877		410	3	1.472	1.471
210	33	2.796	2.799	301	5	1.856	1.857		420	1	1.400	1.399
121	47	2.754	2.756	231	1	1.836	1.837		250	5	1.390	1.392
002	36	2.527	2.530	311	8	1.807	1.808		133	6	1.378	1.380
211	1	$2 \cdot 448$	2.449	141	14	1.749	1.752	1	341	2	1.349	1.350
220	26	$2 \cdot 376$	2.382	222	9	1.733	1.734		060	2	1.308	1.310
031)	0	0.997	2.327	321	33	1.678	1.679	1	430)		1 000	1.300
102 Ĵ	. 0	2.971	2.331	240	6	1.640	1.643		152	3	1.300	1.303
112 (6	$2 \cdot 230$	2.234	103	3	1.622	1.624	1	402	8	1.290	1.289

Acta Cryst. (1962). 15, 90

The crystal structure of hexacyanochromate(III) of divalent cations. By Adolfo FERRARI, MARIA ELENORA TANI and EMANUELE MORISI. Institute of Chemistry, University of Parma, Italy

(Received 26 June 1961)

The hexacyanochromates(III) of divalent cations with formula $Me_3\mu$ [Cr(CN)₆]₂.6H₂O has been prepared and studied by X-ray powder analysis (Cu K α radiation, $\lambda = 1.5418$ Å), as a continuation of a programme of researches on complex hexacyanides.

These compounds are isostructural with the hexacyanoferrates(III), -cobaltates(III), -rhodiates(III) (Ferrari & Tani, 1960) and -iridates(III) (Ferrari, Tani & Morisi, 1961) of divalent cations (space group $O_h^5 - Fm3m$ or $T_d^2 - F\bar{4}3m$, Z = 2).

The unit-cell constants are:

$Mn_3[Cr(CN)_6]_2.6H_2O$,	$a = 10.836 \pm 0.036$ Å,	$d_{c} = 1.798$
$Fe_{3} [Cr(CN)_{6}]_{2}.6H_{2}O,$	$a = 10.426 \pm 0.031$ Å,	$d_{c} = 2 \cdot 026$
$Co_3 [Cr(CN)_6]_2.6H_2O,$	$a = 10.362 \pm 0.012$ Å,	$d_c = 2 \cdot 092$
$Ni_3 [Cr(CN)_6]_2.6H_2O,$	$a = 10.352 \pm 0.014$ Å,	$d_c = 2.096$
$Cu_3 [Cr(CN)_6]_2.6H_2O_7$	$a = 10.325 \pm 0.020$ Å,	$d_c = 2 \cdot 156$
$Zn_3 [Cr(CN)_6]_2.6H_2O,$	$a = 10.601 \pm 0.047$ Å,	$d_{\rm c} = 2 \cdot 007$
$Cd_{3}[Cr(CN)_{6}]_{2}.6H_{2}O,$	$a = 10.953 \pm 0.030$ Å,	$d_{c} = 2 \cdot 176$

The unit-cell constants decrease from Mn to Cu, then increase as observed in the previous series.

The different numbers of molecules of water in the different series are accounted for by their zeolitic character; in all these compounds, water can be eliminated without any change in the structure.

The series of hexacyanomanganates(III) is now under study, but their preparation is rather difficult owing to their instability. Nevertheless it is possible to foresee that the size of the $[Mn(CN)_6]^{3-}$ ion is between that of $[Cr(CN)_6]^{3-}$ and $[Fe(CN)_6]^{3-}$, the size of these ions decreasing with increase of the atomic weight of the metal atom.

References

- FERRARI, A. & TANI, M. E. (1960). Gazz. Chim. Ital. 90, 1565.
- FERRARI, A., TANI, M. E. & MORISI, E. (1961). Acta Cryst. 14, 695.